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H. ARATYN et ul. 

1 INTRODUCTION 

The Kadomtsev-Petviashvili (KP) hierarchy of integrable soliton 
evolution equations, together with its reductions and multi-component 
(matrix) generalizations, describe a variety of physically important 
non-linear phenomena (for a review, see e.g. [1,2]). Constrained 
(reduced) KP models are intimately connected with the matrix 
models in non-perturbative string theory of elementary particles at 
ultra-high energies ([3] and references therein). They provide an uni- 
fied description of a number of basic soliton equations such as 
Korteveg-de-Vries, non-linear Schrodinger (AKNS hierarchy in 
general), Yajima-Oikawa, coupled Boussinesq-type equations etc. 
Recently, it was found in [4] that dispersionless KP models play a 
fundamental role in the description of interface dynamics (Laplacian 
growth problem). Multi-component (matrix) KP hierarchies, in turn, 
contain such physically interesting systems as 2-dimensional Toda 
lattice, Davey-Stewartson, N-wave resonant system etc. Recently it 
has been shown in [ 5 ]  that multi-component KP tau-functions provide 
solutions to the basic Witten-Dijkgraaf-Verlinde-Verlinde equations 
in topological field theory. 

In the present paper we propose a systematic approach, within Sato 
pseudo-differential operator framework, for treating symmetries of 
KP integrable systems, including constrained KP models c K P ~ , ~  
(generalized AKNS hierarchies - see Eq. (20) below), and their 
multi-component generalizations. Any cKPR, hierarchy is shown to 
possess ($(I) @ Z(M))+ @ (E(M + R))- loop-algebra (additional) 
symmetry generated by squared eigenfunction potentials. The latter 
subscripts (f) indicate taking the positive or negative-grade part of 
the corresponding loop algebra. The symmetry flows generating the 
above two mutually commuting loop-algebra factors will be called 
"positive"/"negative" for brevity. 

Furthermore, we provide a systematic construction of the full 
algebra of Virasoro additional symmetries in the case of constrained 
KP models which requires a non-trivial modification of the known 
Orlov-Schulman Virasoro construction in [6] for the general uncon- 
strained KP hierarchy. 

Multi-component (matrix) KP hierarchies are identified as ordinary 
(scalar) one-component KP hierarchies supplemented with a special 
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KP HIERARCHY 235 

set of commuting additional symmetries, namely, the Cartan sub- 
algebra of the underlying loop algebra. This identification leads to 
new systematic methods of constructing soliton-like solutions of 
multi-component KP hierachies by employing the well-established 
techniques of transformations in ordinary one-component KP hierar- 
chies. In particular, Davey-Stewartson [7] and N-wave resonant 
systems arise as symmetry flows of ordinary c K P ~ , ~  hierarchies. 

2 SAT0 FORMALISM FOR ADDITIONAL SYMMETRIES 
OF INTEGRABLE HIERARCHIES 

The general one-component (scalar) KP hierarchy is given by a 
pseudo-differential1 Lax operator C obeying Sato evolution equations 
(also known as isospectral flow equations; for a systematic exposition, 

see [21) 

with Sato dressing operator W 

and (adjoint) Baker-Akhiezer (BA) wave functions ~&(t, A) 

'1n what follows the operator D is such that [D, fl = af = aflax and the generalized 
Leibniz rule holds: Dnf = ~ ~ , ( l ) ( ~ ' f ) D n - j  with n E Z. In order to avoid confusion we 
shall employ the following notations: for any (pseudo-)\differential operator A = 
Ck akDk and a function f ,  the symbol A(f )  will indicate application (action) of A on 
f ,  whereas the symbol Af will denote simply operator product of A with the zero- 
order (multiplication) operator f .  Projections (*) are defined as: A+ = CkzO a k ~ k  and 
A- = Ck5-] akDk. Finally, A = a-1. 
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236 H. ARATYN et al. 

where the tau-function s(t) satisfies the relation: 

Here and below we employ the following short-hand notations: ( t )  = 
(tl = x, t2,. . .) for the set of isospectraltime-evolution parameters; 
[a] = (alatl, ;alat2, f alat,, . . .) and [a-'1 = (*-I, ; A - ~ ,  f A-,, . . .); 
pk(.) indicate the well-known Schur polynomials. 

There exist few other objects in Sato formalism for integrable hier- 
archies which play fundamental role in our construction. (Adjoint) 
eigenfunctions @(t) (W(t), respectively) are those functions of KP 
"times" (t) satisfying: 

According to second Eq. (3), (adjoint) BA functions are special cases 
of (adjoint) eigenfunctions, which in addition satisfy spectral 
equations (first Eq. (3)). 

It has been shown in [8] that any (adjoint) eigenfunction possesses 
a spectral representation of the form2: 

with appropriate spectral densities cp(h) and @(A) which are formal 
Laurent series in h. Clearly, any KP hierarchy possesses an infinite 
set of independent (adjoint) eigenfunctions in one-to-one correspon- 
dence with the space of all independent formal Laurent series in A. 

'integrals over spectral parameters are understood as: Jdh = f0 dl/2in = Resl = 0. 
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KP HIERARCHY 237 

The next important object is the so called squared eigenfunction 
potential (SEP) [9] - a function S(@(t), q(t)) associated with an arbi- 
trary pair of (adjoint) eigenfunctions @(t), q(t) which possesses the 
following characteristics: 

In particular, for n = 1 Eq. (8) implies a,S(@(t), W(t)) = @(t) q(t) 
(recall a, = aptl) .  Equation (8) determines S(@(t), q(t)) = 
aW'(@(t) q(t)) up to a shift by a trivial constant which is uniquely 
fixed by the fact that any SEP obeys the following double-spectral 
representation [8]: 

with &), +(A) being the respective spectral densities in (7). It is in this 
well-defined sense that inverse space derivatives a-' will appear 
throughout our construction below. 

A flow on the space of Sato pseudo-differential Lax operators L or, 
equivalently, on the space of Sato dressing operators W is given by: 

sac = [Ma, L], Sa W = Ma W (10) 

where Ma is a purely pseudo-differential operator. A flow 6, (10) is a 
symmetry if and only if it commutes with the isospectral flows a/at,: 

The general form of M ,  obeying (1 1) is provided by [lo]: 
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238 H. ARATYN et al. 

where p,(h, p) is arbitrary (in the case of the general unconstrained KP 
hierarchy) double Laurent series in h and p. In the second equality 
above the sums run in general over an infinite set A of indices, and 
{a r ,  are (adjoint) eigenfunctions of the Lax operator C (6) 
for Q, = QI and 9 = 91. The second equality in (12) arises from the 
general representation of the "bispectral" density: 

in terms of basis of Laurent series { ( ~ ~ ( p ) )  and {$I(A)J, together with 
spectral representation theorem in [8] for (adjoint) eigenfunctions of 
Sato Lax operators (cf. Eq. (7)). 

Our main objective below will be to construct explicitly symmetry- 
flow generating operators (12), such that the corresponding flows 
both preserve the constrained form of Lax operators defining con- 
strained KP hierarchies, as well as they yield a closed algebra of 
symmetries. At this point let us recall that the following special form 
of p,(h,p) = hk(a/aA)'S(h - p) in (12) [lo] yields the well-known 
Orlov-Schulman Wl+, additional symmetries [6] in the case of the 
general unconstrained KP hierarchy. On the other hand, these stan- 
dard Orlov-Schulman symmetry flows fail to produce symmetries in 
the case of constrained KP hierarchies since they do not preserve the 
constrained form of the pertinent Lax operators. The solution to 
this problem is provided by a non-trivial modification of the former 
flows (see [ l l ]  and Section 6 below). 

On any (adjoint) eigenfunction the action of the flow S, (10) takes 
the form: 

where fl) and @) are other (adjoint) eigenfunctions. Equations (14) 
follow from the second Eq. (10) taking again into account the spectral 
representation theorem in [8]. Note that the emergence of the addi- 
tional (adjoint) eigenfunctions terms on the r.h.s. of (14) is due to 
the fact that the spectral densities of @ and@ in (7) may in general 
vary under the action of 6,. Moreover, as it will be seen in Section 4 
below, in the case of constrained KP hierarchies the presence of the 
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KP HIERARCHY 239 

additional terms on the r.h.s. of Eqs. (14) is mandatory for consistency 
of the flow action (10) with the constrained form of the pertinent Lax 
operator, which accordingly uniquely fixes the form of 3(") and @). 

Making use of the well-known pseudo-differential operator identi- 
ties (cf. e.g. the appendix in first ref. [ll]) : 

one easily finds that the flows 6, (10) span (an infinite-dimensional, in 
general) closed algebra: 

where 

Here the matrices a$) and b$) appear in the inhomogeneous terms in 
the &-flow equations for aI and\Yr, respectively, according to Eq. (14): 

and similarly for a$$) and b$$). In the case of general KP hierarchy 
the specific form of a$) and b t )  for any flow (with label a) is arbi- 
trary a priori, and it is subject to the only condition of fulfillment of 
Jacobi identities for the flow commutator (17). However, for con- 
strained KP hierarchies the form of a:) and b$) is determined uniquely 
from the consistency (Eq. (21) below) of the flow action with the 
constrained form of the pertinent Lax operator, see Section 4 below. 

Finally, starting from relation (5) and using (1 1) we find for the 
transformation of the tau-function under the action of &-flow (10): 
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240 H. ARATYN et al. 

3 CONSTRAINED KP HIERARCHIES. INVERSE POWERS 
OF LAX OPERATORS 

So far we have considered the general case of unconstrained KP 
hierarchy. Now we are interested in symmetries for constrained KP 
hierarchies c K P R , ~  with Lax operators (cf. [11,8,12] and references 
therein): 

where {Qi, q i ] E 1  is a set of (adjoint) eigenfunctions of C.  
The second representation of ,C r tR, M 3  is in terms of a ratio of two 

monic purely differential operators L M + ~  and LM of orders M + R 
and M, respectively (see [12] and references therein). For C  = C R , ~  
the Sato evolution (isospectral flow) Eqs. (I), the equations for 
(adjoint) BA (3) and (adjoint) eigenfunctions (6) acquire the form: 

In the case of constrained hierarchies (20), we have the following 
additional condition on the symmetry generating operator M a  since 
the flow (10) must preserve the constrained form (20) of the pertinent 
Lax operator (cf. (14) and 12)): 

3~enceforth we shall employ the short-hand notation L for LR,M (20) whenever this 
will not lead to a confusion. 
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KP HIERARCHY 24 1 

where (cf. (14)): 

Equation (21) uniquely fixes the form of the additional terms 3j*) and 
@' in (22). 

In what follows we will also need the &-flow equations on inverse 
powers of the Lax operator L = LM+RL; (20). First, let us recall 
that the inverses of the underlying purely differential operators are 
given by 

where the functions { p i } E ,  and {&}EL span Ker(LM) and Ker(L&), 
respectively, whereas {@,IF and span Ker(LM,R) and 
Ker(Lk+R), respectively. Therefore we have 

M+R N-I 

Compare the last formula (26) with the formula in [ I  31 for the negative 
pseudo-differential part of a positive power of L (20) 

Let us also note that the following simple consequences from the 
definitions of the corresponding objects will play essential role for 
the consistency of the constructions involving inverse powers of L: 
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242 H. ARATYN et al. 

Applying the flow Eq. (10) to C-' (25) S,C-' = [M,, C-'1 and 
taking into account the explicit form of M, (second equality 12)) we 
obtain 

with consistency condition for the "shift" functions ~ r ' a n d  c:) 
(the analog of Eq. (22)) 

Also, from the isospectral flows equations applied on C-', i.e., 
( C 1 ) t  = L R 1 ] ,  we find, taking into account (28), that 
LM(&) and $a are (adjoint) eigenfunctions of C (cf. (??)): 

4 LOOP-ALGEBRA SYMMETRIES OF KP HIERARCHIES 

Let us consider the following system of M infinite sets of (adjoint) 
eigenfunctions of L = C R , ~  (20): 

which are expressed in terms of the M pairs of (adjoint) eigenfunctions 
entering the pseudo-differential part of L = C R , ~  (20). Using (32) we 
can build the following infinite set of symmetry flows (cf. (10) and 12)): 

where A(") is an arbitrary constant M x M matrix, i.e., A ( ~ )  E Mat(M). 
Consistency of the flow action (33) with the constrained form (20) of 
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KP HIERARCHY 243 

L = L R , ~  (cf. (21)) implies the following flow action on the involved 
(adjoint) eigenfunctions 

The specific form of the inhomogeneous terms on the r.h.s. of 
Eqs. (34) is the main ingredient of our construction. It is precisely 
these inhomogeneous terms which yield non-trivial loop-algebra 
additional symmetries. 

Using the pseudo-differential operator identities (15) and taking 
into account (34) we can show that (cf. Eq. (17)) 

Equation (35) implies that the symmetry flows (33)-(34) span the 
following infinite-dimensional algebra 

isomorphic to (6(l) x E(M))+ where the subscript (+) indicates 
taking the positive-grade sub algebra of the corresponding loop- 
algebra. We observe, that in the case of c K P R , ~  models we have 
~ $ 1 , ~  = (L$,,)- (insert (32) into first relation (33) for A(") = 1 and 
compare with (27)). Therefore, the flows 6$'ifl for c K P R , ~  models 
coincide upto a sign with the ordinary isospectral flows modulo R: 
6'") ~ = f l  - - (cf. Eq. (??)). Thereby the flows 6;' (33) will be 
called "positive" for brevity. 

Now we consider another infinite set of (adjoint) eigenfunctions of 
L = L R , ~  expressed in terms of the (adjoint) eigenfunctions entering 
the inverse power of L = CR, M (25) : 
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244 H. ARATYN et al. 

Using (37) we obtain the following set of "negative" symmetry flows 
which parallels completely the set of "positive" flows (33): 

where A:;") is an arbitrary constant (M + R) x (M+ R) matrix, 
i.e., E Mat(M + R). In fact, since according to (26) we have 
~$1: = L-", the flows S$Z~ vanish identically, i.e., sf:), = 0, there- 
fore, we restrict A(-") E SL(M + R). 

Consistency of the flow action (39) with the constrained form (20) of 
L C: LR,M (cf. (21)) and with the constrained form (25) of the inverse 
L-' implies the following 87)-flow action on the involved (adjoint) 
eigenfunctions (using short-hand notations (32) and (37)): 

Similarly, consistency of "positive" a$"-flow action (33) with the 
constrained form (25) of the inverse Lax operator implies: 

Using again the pseudo-differential operator identities (15) we find 
from (40)-(42) (cf. Eq. (35)) 
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KP HIERARCHY 245 

Equations (43)-(44) imply that the "negative" symmetry flows 
(20)-(41) commute with the "positive" flows (33)-(34) 

and that they themselves span the following infinite-dimensional 
algebra 

- 6(-n-m). 
- [A, a A(-"), @-") E SL(M + R), n, m = 1,2, . . . 

(48) 

which is isomorphic to (E(M + R))- (the subscript (-) indicates taking 
the negative-grade subalgebra of the corresponding loop-algebra). 

Therefore, we conclude that the full loop algebra of (additional) 
symmetries of c K P R , ~  hierarchies (20) is the direct sum 

The construction above can be straightforwardly extended to the 
case of the general unconstrained KP hierarchy defined by (1). All 
relations (33t(36) and (39)-(46) remain intact where now 

form an infinite system of independent (adjoint) eigenfunctions of the 
general Lax operator (1) with M, M + R being arbitrary positive 
integers. 

5 MULTI-COMPONENT KP HIERARCHIES FROM 
ONE-COMPONENT ONES 

Let us now consider the following subset of "positive" flows 6$: (33) 
for the general KP hierarchy (1) corresponding to 
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246 H. ARATYN el al. 

Due to Eq. (36) the flows 6$; span an infinite-dimensional Abelian 
algebra and, by construction, they commute with the original isospec- 
tral flows a/%,, as well. Comparison with our construction in [14] 
allows us to identify the set of isospectral flows plus the set of 
a$;-flows (49) 

(e) 
with the set of isospectral flows { t , , ] ~ ~ ~ ; ~ , ' M + '  of the (uncon- 
strained) M + 1-component matrix KP hierarchy. The latter is defined 
in terms of the M + 1 x M + 1 matrix Hirota bilinear identities 

(see t 141) 

M+ 1 (k) (fi) (k)  g Ejk Ejk p *~n+b-~ e[(' - I  J ) t i k ( .  . . , t - [ r l ] ,  . . .) 

which are obeyed by a set of M(M + 1) + 1 tau-functions {q} 
expressed in terms of the single tau-function t and the "positive" 
symmetry flow generating (adjoint) eigenfunctions (48) in the original 
one-component (scalar) KP hierarchy (1)-(5) as follows 

Here EQ = 1 for i 5 j and EV = -1 for i > j, and Sii are the usual 
Kronecker symbols. 

The above construction of multi-component (matrix) KP hierar- 
chies out of ordinary one-component ones can be straightforwardly 
carried over to the case of constrained KP models (20) using the 
identification (32) for the symmetry-generating (adjoint) eigen- 
functions. In this case, however, there is a linear dependence 
among the flows (50) CL, = -a/at,, therefore, the associated 
constrained multi-component KP hierarchy is now M x M matrix 
hierarchy. 
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KP HIERARCHY 247 

Similarly, we can start with the subset of "negative" symmetry flows 
sC) (20) for cKPR, hierarchy4 

which also span an infinite-dimensional Abelian algebra of flows com- 
muting with the isospectral flows. Then, following the steps of our 
construction in [I41 we arrive at (M + R)-component constrained 
KP hierarchy given in terms of (M + R)(M + R - 1) + 1 tau-functions 
{Cb) obeying the corresponding (M + R) x (M + R) matrix Hirota 
bilinear identities (cf. (51)). The latter tau-functions are expressed in 
terms of the original single tau-function t and the "negative" flow 
generating (adjoint) eigenfunctions (37) in the original ordinary 
c K P R , ~  hierarchy as follows: 

Let us recall that multi-component (matrix) KP hierarchies (51) 
contain various physically interesting non-linear systems such as 
Davey-Stewartson and N-wave systems, which now can be written 
entirely in terms of objects belonging to ordinary one-component 
(constrained) KP hierarchy. For instance, the N-wave resonant 
system (N = M(M + 1)/2) is given by 

 he flow &") for k = 1 is excluded since C~M_:RS~) = 8511 which vanishes 
identially as explained in the previous section. 
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248 H. ARATYN et al. 

As a further example, we will demonstrate that the well-known 
Davey-Stewartson system in [7] arises as particular subset of symme- 
try flow equations obeyed by any pair of adjoint eigenfunctions 
(Qi, q i )  (i = fixed) or (,LM(qa), $a)  (a = fixed). In fact, for (Qi, 'Pi) 
(i = fixed) this has already been done in [14]. Here for simplicity we 
take c K P 1 , ~  hierarchy (Eq. (20) with R = 1; the general case is 
straight-forward generalization of the formulas below) and consider 
a pair of "negative" symmetry flow generating (adjoint) eigenfunc- 
tions, e.g., (4 = LM(qa), I) = Ga) (a = fixed), which @eys the follow- 
ing ubset of flow equations - w.r.t. a/at2, 8 = a p t  and a/& = 

67 
a ~ a t - ~  (cf. ~ q .  (41)): 

where 

Using (61) we can rewrite Eq. (62) as purely differential equation 
w.r.t. 5 

Now, introducing new time variable T = t2 - G and the short-hand 
notation Q E l  @ - 2 - 2 ( a 1 ( ) )  and subtracting 
Eqs. (64) from Eqs. (60), we arrive at the following system of 
(2 + 1)-dimensional non-linear evolution equations: 
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which is precisely the standard Davey-Stewartson system in [7] for 
the "negative" (adjoint) eigenfunction pair (4 = LM(Fa), + = Ga) 
(a = fixed). 

The construction in this Section allows us to employ the well-known 
techniques from ordinary one-component (scalar) KP hierarchies 
(full or constrained) in order to obtain new soliton-like solutions of 
multi-component (matrix) KP hierarchies (see [14]). 

6 THE FULLVIRASORO ALGEBRA OF ADDITIONAL SYMMETRIES 

In [ l l]  we have constructed an essential modification to the original 
Orlov-Schulman additional Virasoro symmetry flows in [6] needed 
in the case of c K P R , ~  reduced KP models (20) for n 2 0, i.e., for 
the Bore1 subalgebra (henceforth L = LR. M )  

or, equivalently 

where 6; EX -Ln-' (in terms of standard Virasoro notations). Here 

[L, MI = I, M = ktXLk-' + C(-jpj(-[a]) ln T)c-'-' (72) 
k? 1 ' 2  1 

The presence of the additional terms Xn in (68) is very crucial to ensure 
that the flows 6; preserve the constrained form of the pertinent 
pseudo-differential Lax operator (20). The ordinary Orlov-Schulman 
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flows 8,0S,C = [-(MCn)-, C]  do not define symmetries for constrained 
cKPR, hierarchies. 

The action of 8;-flows on the pertinent (adjoint) eigenfunctions 
reads accordingly (for n 3 0) : 

Similarly, for the (adjoint) eigenfunctions entering the inverse Lax 
powers we find from ~ L c - '  = [-(ML")-+x,,L-'1 and Eqs. (28) 
(for n 1 0): 

Here we want to extend the above construction to cover the case of 
the full Virasoro algebra of additional symmetries. For the negative 
flows we must therefore find the appropriate additional terms X(-,) 

or, equivalently 

so that the consistency condition (21) is satisfied. Using again the 
pseudo-differential operator identities ( IS)  and taking into account 
the relevant formulas for negative Lax powers (26) we obtain the 
following explicit expressions for X(-,) 

The consistency of the negative flow definitions (76) with X(-,) as in 
Eq. (77) crucially depends on the relations (28). 
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The flows 6rn act on the constituent (adjoint) eigenfunctions of C as 

and similarly on the (adjoint) eigenfunctions LM(+,), $a entering the 
inverse powers of C 

Let us now consider the commutator of the Virasoro flows 8: 2: 

-Ln-l and 8; 21 -Lm-l acting on C (cf. Eq. (16)) where (n, m) are 
arbitrary non-negative or negative indices 

Using the identity 

the r.h.s. of Eq. (81) can be rewritten in the form 

Now, employing the pseudo-differential identities (15) it is easy to 
show, taking into account (72F(74) and (78)-(80), that the sum of 
all terms in (83) involving X,,, yield 
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Thus, we have verified the closure of the full Virasoro algebra of 
additional symmetries without central extension 

OUTLOOK 

In a subsequent paper we will generalize the present construction 
of additional symmetries to the case of supersymmetric integrable hier- 
archies. We will continue the derivation and study of properties of new 
soliton-like solutions of multi-component KP hierarchies obtained via 
standard methods for ordinary one-component KP models which has 
been already initiated in [14]. In a forthcoming more detailed paper we 
will systematically study the construction of additional (loop-algebra 
and Virasoro) symmetries within a generalized Drinfeld-Sokolov 
formalism both in ordinary and supersymmetric integrable systems 
of KP type. Also we will relate the algebraic dressing method to 
Sato pseudo-differential operator approach. 
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